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The problem of the vibrations of a one-dimensional chain of n + 1 linearly connected material points, under 

the action of a constant force F applied suddenly to the end point, is considered and the exact solution is 

analysed. It is proved that the supremum of the connecting force between the end point and its predecessor 

is equal to (2Fn)l(n + 1) if and only if the number of points is either prime or a power of 2. The behaviour of 

the supremum if this condition is not satisfied is demonstrated in the special case of six points. A discussion 

of the relationship with vibrations of the corresponding continuous medium and with the convergence of the 

method of straight fines is presented. 

A SIMPLE and widely used model of a train is a collection of t2 + 1 (n 2 1) material points placed along 
a straight line and connected in series (see for example Cl]). For simplicity, we shall assume that all 
the points have the same mass M and that the connections are linearly elastic with the same stiffness 
coefficient c. Denote the displacement of the jth point (j = 0, 1, . . . , n) from its initial, unloaded 
equilibrium position by Yj = yj(t), and the elastic force between the jth and (j- 1)th points by 
Oj=C(Yj-Yj_*),j=l,. . ,,y1. 

Let us suppose that, beginning at a time E = 0, a force f(t) is applied to the 0th point (the 
“locomotive”). The functions oj(t) will then be solutions of the system of equations 

MDj” (t) = C (Uj+* - 20, + Uj_& 1 = 1, * * *, n 

cr, := -f (f); t&t+1 := 0 (1) 

with zero initial conditions. 
If IZ is large, one often replaces this discrete model by a continuous one, i.e. system (1) is replaced 

by the wave equation 

Mutt (Z, t) = CPU= (2, t) (2) 

where His the initial distance between the material points, which is assumed to be independent of j, 
and cr(x, t) = -j(t) if n = jH. Equation (2) is to be solved with the following initial data/boundary 
conditions: 

(I (0, 8) = -f (t), u (?ZH, t) = 0 

Such problems are solved by the method of characteristics. 

(3) 
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One is naturally interested in the relationship between the solutions of problems (1) and (2), (3). 
The problem may be formulated more clearly by fixing some 1 >O, introducing a new variable 
5 = N(nH)x E [0,1] and setting nM/l = p, cl/n = E, l/n = h (this is the distance between the points 
on the 5 axis). Then system (1) becomes 

pai” = E ‘j+l --u.+uj_l 
,,’ (j=l,...,ti) 

IJO = -f (t); un+1 = 0 (4) 
On the other hand, application of the same transformation to Eq. (3) gives 

patt = Eqt, 0 < x < 1, 0 < t < 00 (5) 
Equation (5) is obtained from (4) by letting II+ M, h+ 0 while keeping nh = 1, p, E constant. 
Thus, our problem is to determine the relationship between discrete and continuous models of 

linear elastic longitudinal vibrations of a continuous medium. However, observing that system (4) is 
obtained from (5) by introducing the standard finite-difference approximation of the derivative aSS, 
one essentially arrives at the question: is it possible to use the method of straight lines to solve Eq. 
(5) approximately? 

The method of straight lines is known to be applicable in problems of this type with suitable 
assumptions [2,3]; indeed, some of the pioneers of mechanics (Lagrange, Rayleigh and Joukowski) 
concerned themselves with the natural transition from the discrete to the continuous model and vice 
versa. For these reasons, the passage from model (1) to model (2) is a widely used strategem in 
computational mathematics. However, the essential differences between these models must also be 
kept in mind. 

Let us consider the simplest case: f(t) = -I; (F = const >0) (the train is set in motion by a 
constant pulling force). Then the solution of problem (2), (3) is a step function, which may be 
written 

o (x, t) = FB (nH arcsin 1 sin (GlG+) 

where t3 (t) is the Heaviside unit function. Clearly, 0~ cr (x, t) d F for all t E R, , x E [0, nH]. 
On the basis of these and some other approximate arguments, some authors (e.g. [l, 41) have 

assumed that when f(t) = -F an analogous inequality holds for all components of the solution of 
system (l), provided only that n is large enough. This is in fact confirmed by a simple analysis of the 
solution of system (1) for n = 1: 

or (t) = ‘l,F (1 - cos v2clM t) 

However, direct computations for large n = 40, 80, 120 have shown that the values of vi(t) at 
certain times tj* (different for different js) may considerably exceed F (by a few dozen percent)-a 
circumstance of immediate practical concern when one is dealing, say, with actual rolling stock. 

Our aim in this note is to study this problem. 
Whenf(t) = -F system (1) can be solved exactly (see [4, p. 2811): 

(7) 
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Formula (7) immediately yields upper and lower limits that are valid for all t> 0: 

-- 

K=l (-) 

5 G-.--E-- ) (sin-@-j)(+) etg Jlk n+j 4 n-l-* 206-t 1) 
k=l 

a(+) =&(a) = 

Recall that numbers p1 , . . . , 
numbers Q if, whenever rl fit + 

Theorem 1. If the numbers 

1 0, a, a > 0, 0, 
a<& 

a(_] =a[@(a)--lf tZ>O = 1 
14 a<0 

Pn are said to be linearly independent over the field of rational 
. . . + r,, & = 0, where rk E Q, all the r,@ must vanish. 

are linearly independent over Q, then for any T>O the limits (8) are the best possible in the interval 
Tgt< w, i.e., foreveryj= 1,. , .,n, 

2F )1 * 
sup oj (E) = nff JY sin+-- ij,,, nk ctg 2(n+ 1) 
t>,T 

x2 

(1%) 

n 

C( * sin nk i),_, 
nk 

nff ctg 2(n+ 1) (11) 
=l 

and moreover if n > 1 the supremum (10) is not achieved and if j> 1 the same is true of the infimum 
(1 I) [when i = 1 the infimum (11) is achieved only at t = 01. 

The proof of this theorem (and of Theorem 2, see below) are postponed to the Appendix. We will 
content ourselves here with the observation that the proof of Theorem 1 relies on a classical 
theorem of Kronecker on diophantine inequalities. 

One consequence of this result is that the solution (6) (as t--+ +m) is by no means a uniform 
asymptotic limit of the solution (7) as ?r+m if the frequencies ok are linearly independent over 
Q-at any rate, unless the data are somehow averaged over the x axis. 

The criterion for linear independence of the numbers (9) yields the following theorem. 

Theorem 2. The numbers (9) are linearly independent if and only if it + 1 is either a prime number 
or a power 2N, where N = 2, 3, . . . . 

Corollary. Ifn+1~3andn+lisprimeorn+1=2N(N. >2), then Eqs (10) and (11) are true. 

In some cases inequalities (8) may be simplified. Thus, if j = 1 it is always true that sin(&/ 

n + l)j>O, so that by using the standard formula 
m-t1 

c cos(a+rb)= cos 
( 

a+ -fff-$b) sin m-$/sin + 

I==0 

one can show that the upper limit in (8) is 
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k=l 

=+&1+cos+)=~ F (13) 
n+l 

k=l 

while the lower limit vanishes. Thus, if j = 1 we have simply 

Similarly, if j = IZ the same formula (12) enables us to show 
* 

that 

nk - nn 
srn - 

n+l 
k 

> (+) ctf3 z(n+i) 

(14) 

2r$ I 
=- 

( 

R ctg 2(n+i) ) 
n=F 

r4 

k=l 

nk 

w ctg 2 (n + 1) X 
r4 

X sin 
( 

+$-rr ) 
2r + 2 

ctg 2(n + 1) 
n-i 

5Ct= n+l 
l F 

so that if j = n inequalities (8) become 

Estimates (14) and (15) are the best possible if n + 1 is prime or IZ + 1 = 2N (NZ 2). 
Obviously, although al(t) is always less than 2F, it may approach as close to 2F as desired for 

large n of the above type. On the other hand, it is always true that 1 u,(t) 1 d F. 
We will now need the formula 

n 

sin& jctg nk 
2(n+l) = 

n-j+l(n=l,2 ,...; j=l,..., n) 

When j = 1 this is equivalent to formula (13); for j> 1 it may be proved by induction on j, using 
Eq. (12). It follows from this equation that the sum of the right-hand sides of (10) and (11) is 
2(n-j+l)F(n+l), . i.e. only one of these numbers needs to be evaluated. For relatively small n, 
direct evaluation of trigonometric functions yields the following limits, which are the best possible: 

n= 1: O<a,(t)\<F 
n = 2: 0 < o1 (t) < 4/3F; -V,F < u, (1) < F 

n = 3: 0 < u1 (t) < V2F; -0,207lF < us (t) < 1.207lF; -0,5F < 

< (JCI (t) < F 
n = 4: 0 < u1 (t) < 1,6F; -0,2944F < ua (t) < 1,4944F 

-0,4944F < us (t) < 1,2944F; -0,6F < u4 (t) < F 

Theorem 1 does not apply when n = 5 (n + 1 = 6), because, by Theorem 2, the numbers (9) will 
then be linearly dependent over Q. Indeed, it can be verified that when IZ + 1 = 6 



874 P. F. KURCHANOV et al. 

B1 + 83 - Bs = 0 (16) 

but the numbers pi, p2 , p3, p4 are linearly independent. 
Let us analyse the case n + 1 = 6, j = 1. By (13) and (14), the right-hand side of (7) is equal to 

A direct check shows that if O<ad 1 

max (-cos u - 
U, 1’ER 

cos U - a cos (U + 0)) = 2 - a 

and this maximum is reached when cosu = cos v = - 1. It thus follows from Kronecker’s theorem 
that the supremum (which is not reached) of (17) is 

Thus, when n + 1 = 6 exact evaluation improves the general estimate (14) by only 2.7%. 
Other values of i, tz may be considered similarly, but as II increases the analytical difficulties of an 

exact treatment increase rapidly, and it becomes more reasonable to use (7) and actually calculate 
the required quantities. It would be interesting to have a rigorous proof of some general properties 
of the functions Us, e.g. when the mass of the 0th point (the “locomotive”) exceeds the mass M of 
each of the other points. 

Of course, these considerations do not mean that the method of straight lines is not legitimate, 
since it is assumed that the time interval is fixed as n increases. When the method is applied to our 
problem, however, the periodic solution is approximated by almost periodic functions, and then 
convergence over a finite interval need not imply uniform convergence for all t> 0. On the contrary, 
on passing from system (1) to Eq. (2) one loses certain fine effects (“bursts”), though the transition 
is perfectly justifiable if one is only interested in average quantities. 

In the language of mechanics, what we have just said means that when analysing the so-called 
“local properties” of a one-dimensional continuous medium, one cannot treat the medium as the 
limiting case of a linear chain of point masses, obtained when the number of points increases 
without limit. 

It is natural to ask how long the time interval must actually be for “bursts” to be detectable. Our 
results imply that the presence of such effects depends only on the arithmetic properties of the 
number of points (prime or a power of two) but not on the masses M or stiffnesses c. However, a 
glance at the formula for the frequencies wk will reveal that these bursts appear at times that depend 
on d(c/M). The practical range within which M and c may vary is quite large (e.g., M may vary 
from atomic masses to the mass of a railway carriage). We have calculated that at M and c values 
corresponding to railway rolling stock such bursts of forces, exceeding F by approximately 30% 
appear even over a 15 second time interval. 

Finally, we note that the results remain valid if the pulling force f(t) increases to F not in a 
stepwise fashion but continuously, and fairly rapidly; this is the case, for example, if 
f(t) = F(1 - e?) with a sufficiently large exponent x > 0. 

We wish to thank Yu. V. Kuz’min for discussing the results. 
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APPENDIX 

Proof of Theorem I. That the supremum (10) and infimum (11) are not reached follows from the linear 
independence of the frequencies wk over Q; for n> 1 and any j = 1, . . , n, at least two of the numbers 
sin(7rkln + l)j (k = 1, _ . . , n) do not vanish, while if j>O they are not all of the same sign. The fact that the 
limits (8) are the best possible when oj(t) is defined for all tE R by Eq. (7) follows from the following version of 
Kronecker’s theorem (see, for example, [5]): if real numbers wl , . . . , w, are linearly independent over Q, then 

for any S >O and any real numbers hi, . . . , h, there exist integers mk such that the system of inequalities 

1 f”kt* - hk - hmk 1 < 6 

is solvable for t *. Noting that the functions ai are linearly independent, we arrive at (10) and (11). 

Proof of Theorem 2. Set ok = cos [Tk/2(n + l)] (k = 1, . . . , n). . Then Bk = an+l-k and it will suffice to check 
the numbers al, . . . , a, for linear independence over Q 

We have ok+ i& = ik, where 5 = exp(2dm), m = 4(n + 1). 
Before proceeding with the proof we will recall some facts from algebra. Let P, U be number fields (subfields 

of the field C of complex numbers), there PC U, i.e. U is an extension of P. Numbers ur , . . . , gfi E U are said 
to be linearly independent over P if any equality pi ui + . . . i-p,, u, = 0 (where all pj are elements of P) implies 
that all the pjs vanish. This enables one to define the dimensionality of U over P, also known as the degree of 
the extension and denoted by [U: P]. The degree has the following property: if P, U, V are number fields such 
that PC UC V, then 

lV:P]=[V: U]*[U:Pl (18) 

We can now proceed to the proof proper. By the theory of the cyclotomic equation (see, e.g. [6]), the set V 
of all numbers of the form ro + rl 4 + . . . + r,_i J”-’ (where all the ris are in Q) form a field, and moreover 
[V: Q] = q(m), where q(m) is Euler’s unction, that is, the number of natural numbers not greater than m and 
prime to m. [Thus, ~(1) = 1, (p(3) = 2, (p(4) = 2, (p(5) = 4, (p(6) = 2 and so on. We will also need the following 
property of Euler’s function: if ml m2 E N are coprime, then cp (ml, m2) = cp (ml ) cp (m2.] It also follows from the 
general theory that { is a root of some polynomial of degree cp(m) with coefficients in Q, defined uniquely by 
these conditions apart from a constant factor; but it is not a root of any polynomial of degree less than cp (m) 
over Q. 

Let U denote the set of all real numbers in V. Clearly, Uis a field and ffk = l/2@ + {m-k) E U for all k. Since 

and the fractions in parentheses are real, it follows that every number in V can be expressed as 

u,+~&X”?, h w ere ul,u2~U. Thus [V: U]<2. But Uf V, so [V: U] = 2 and it follows from (18) that 
[U: Q] = l/Zcp(m). Therefore, if n> 1/2?(m), the numbers al, . . . , a, are Iineariy dependent over Q. 

We will now prove that if n + I is neither a power of two nor a prime number, then this inequality must be 
true. Indeed, suppose that n + 1 is neither a power of two nor a prime. Then n + 1 = 2Nq, where N = 0, 1, . . _ 
and q is odd. But then 

l/og (m) = ‘/,cp(2N+aB) = ‘/*‘p (ZN+s) rp:(q) = 2Nq (q) Q 2N (q - 1) = 

=n+i -2N<?z 

If q is not a prime, the first inequality in this chain of inequalities is strict; but if q is a prime, then Na 1 and 
therefore the second inequality is strict, as required. 

We can now show that if n + 1 is either a power of two or a prime, the numbers ol, . . _ , a,, are linearly 
independent. Suppose we are given a non-trivial linear relation 
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rlal + . . . + r,a, = 0 (1% 

where rl, . , r, E Q, but not all the ‘is are zero. Since (Y& = 1/2(ck + c-k), multiplication of (19) by 25” will 
show that 5 is a root of the polynomial 

g (5) = rr (zntl + z?-l) + r2 (znt2 + iF2) + . . . + r, (9” + 1) 

Let n + 1 = p be an odd prime. Then 

cp (m) = cp (4p) = 2 (p - 1) = 2n 

On the other hand, it is obvious from the equalities 

g,PP - 1 = (p + 1) (p - 1) (pJ-1) - p-a) + . . . -p + 1) = 0 (20) 

that s(c) = 0, where s(x) = .x~@-~)-x~@-~) + . . -x2 + 1. Since the degree of s(x) is q(m), the polynomial 
g(x), which is of degree 6cp (m), must be proportional to s(x). But that is impossible, since the coefficient of x” 
in s(x) is 1 or -1, while that in g(x) is 0. 

Finally, if n + 1 = 2N, N3 1, we have 

cp (m) = cp (ZJv+s) = 2N+r = 2 (n + 1) 

Thus no polynomial over Q of degree less than 2(n + l), in particular g(x), can have c for a root. 
This completes the proof of Theorem 2. 
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